Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Bis(2,4,6-trimethylpyridinium) chloranilate

Hiroyuki Ishida

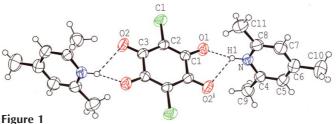
Department of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan

Correspondence e-mail: ishidah@cc.okayama-u.ac.jp

Key indicators

Single-crystal X-ray study T = 296 KMean $\sigma(\text{C-C}) = 0.004 \text{ Å}$ R factor = 0.046 wR factor = 0.122Data-to-parameter ratio = 18.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.


In the title compound, $2C_8H_{12}N^+\cdot C_6Cl_2O_4^{2-}$, the cation and the anion are held together by bifurcated $N-H\cdots O$ hydrogen bonds to give a centrosymmetric chloranilate–trimethylpyridinium 1:2 unit. The 1:2 units are connected by $C-H\cdots O$ hydrogen bonds to form a molecular layer.

Received 6 October 2004 Accepted 7 October 2004 Online 16 October 2004

Comment

The title compound, (I), was prepared in order to extend our study of $D-H\cdots A$ hydrogen bonding (D=N, O or C; A=N, O or Cl) in the chloranilic acid (2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone)—amine 1:2 system. Crystal structures have been analyzed for 1:2 complexes of diazine (Ishida & Kashino, 1999a,b), diazole (Ishida & Kashino, 2001), toluidine (Fukunaga *et al.*, 2003), pyrrolidine (Ishida, 2004a) and picoline (Ishida, 2004b). Proton-transfer motions in the intermolecular hydrogen bonds have been observed for the 1:2 complexes of pyridazine and pyrazine by 1H NMR and ^{35}Cl NQR techniques (Nihei *et al.*, 2000a,b).

In (I), the asymmetric unit is composed of one 2,4,6-trimethylpyridinium cation and half a chloranilate anion. The ions are held together by bifurcated N-H···O hydrogen bonds (Table 2) to give a centrosymmetric chloranilate-trimethylpyridinium 1:2 unit, similar to that observed in the diazine complexes (Fig. 1). The chloranilate ion shows a

ORTEP-3 (Farrugia, 1997) drawing of (I) with the atom-labeling. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level. N-H \cdots O hydrogen bonds are indicated by dashed lines. Unlabeled atoms are related to labeled atoms by 2-x, 2-y, 1-z. [Symmetry code (i) is as in Table 1.]

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

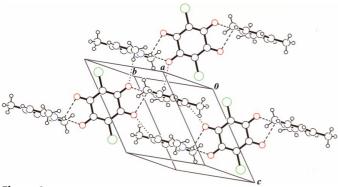


Figure 2 Packing diagram of (I), showing a molecular layer formed by N−H···O and C-H···O hydrogen bonds, which are indicated by dashed and dotted lines, respectively.

characteristic structure, having four short C-C bonds and two extremely long C-C bonds (Table 1), which is explainable in terms of the double π system of the anion (Andersen, 1967; Benchekroun & Savariault, 1995). The planes of the chloranilate ring and the pyridine ring are almost perpendicular, the angle between them being 80.04 (4)°, probably due to the steric repulsion between the methyl groups and the O atoms of the anion. The 1:2 units are connected by $C-H \cdots O$ hydrogen bonds (Table 2) to form a molecular layer extending parallel to the (110) plane (Fig. 2).

Experimental

Crystals were obtained by slow evaporation of an acetonitrile solution of chloranilic acid and 2,4,6-trimethylpyridine in a 1:2 molar ratio.

Crystal data

$2C_8H_{12}N^+ \cdot C_6Cl_2O_4^{\ 2-}$	Z = 1
$M_r = 451.35$	$D_x = 1.311 \text{ Mg m}^{-3}$
Triclinic, $P\overline{1}$	Mo $K\alpha$ radiation
$a = 8.4902 (9) \text{ Å}_{2}$	Cell parameters from 25
b = 9.0205 (16) Å	reflections
c = 9.3236 (14) Å	$\theta = 10.5 - 12.5^{\circ}$
$\alpha = 115.456 (12)^{\circ}$	$\mu = 0.31 \text{ mm}^{-1}$
$\beta = 112.034 (10)^{\circ}$	T = 296 K
$\gamma = 94.799 (13)^{\circ}$	Prism, brown
$V = 571.48 (18) \text{ Å}^3$	$0.50 \times 0.30 \times 0.20 \text{ mm}$

Data collection

Rigaku AFC-5R diffractometer	$R_{\rm int} = 0.014$
ω –2 θ scans	$\theta_{\rm max} = 27.5^{\circ}$
Absorption correction: ψ scan	$h = -11 \rightarrow 10$
(North et al., 1968)	$k = 0 \rightarrow 11$
$T_{\min} = 0.895, T_{\max} = 0.940$	$l = -12 \rightarrow 10$
2780 measured reflections	3 standard reflections
2615 independent reflections	every 97 reflections
1704 reflections with $I > 2\sigma(I)$	intensity decay: 0.5%

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.051P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.046$	+ 0.175 <i>P</i>]
$wR(F^2) = 0.122$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.01	$(\Delta/\sigma)_{\text{max}} = 0.001$
2615 reflections	$\Delta \rho_{\text{max}} = 0.22 \text{ e Å}^{-3}$
143 parameters	$\Delta \rho_{\min} = -0.31 \text{ e Å}^{-3}$
H atoms treated by a mixture of	
independent and constrained	

Table 1 Selected bond lengthss (Å).

Cl-C2	1.739 (2)	C1-C3i	1.543 (3)
O1-C1	1.257 (3)	C2-C3	1.414 (3)
O2-C3	1.227 (2)	N-C8	1.338 (3)
C1-C2	1.381 (3)	N-C4	1.347 (3)

Symmetry code: (i) 2 - x, 2 - y, 1 - z.

Hydrogen-bonding geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
$N-H1\cdots O1$ $N-H1\cdots O2^{i}$	0.91 (4) 0.91 (4)	1.81 (4) 2.40 (3)	2.697 (3) 2.880 (3)	168 (3) 114 (2)
$C5-H2\cdots O2^{ii}$ $C9-H6\cdots O1^{iii}$	0.93	2.55	3.345 (4) 3.404 (3)	143 142

Symmetry codes: (i) 2 - x, 2 - y, 1 - z; (ii) x - 1, y - 1, z; (iii) 1 - x, 1 - y, -z.

The H atom attached to the N atom was refined isotropically. Methyl H atoms were positioned geometrically (C-H = 0.96 Å) and refined as riding, with free rotation about the C-C bond. $U_{iso}(H)$ values were set at $1.5U_{eq}(C)$. Aromatic H atoms were also treated as riding, with C-H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1990); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN for Windows (Molecular Structure Corporation, 1997–1999); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

X-ray measurements were made at the X-ray Laboratory of Okayama University. This work was supported by a Grant-in-Aid for Scientific Research (C) (No. 16550014) from the Ministry of Education, Science, Sports and Culture of Japan.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.

Andersen, E. K. (1967). Acta Cryst. 22, 196-201.

Benchekroun, R. & Savariault, J.-M. (1995). Acta Cryst. C51, 186-188. Fukunaga, T., Kumagae, N. & Ishida, H. (2003). Z. Naturforsch. Teil A, 58,

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Ishida, H. (2004a). Acta Cryst. E60, o974-o976.

Ishida, H. (2004b). Acta Cryst. E60, o1900-o1901.

Ishida, H. & Kashino, S. (1999a). Acta Cryst. C55, 1149-1152.

Ishida, H. & Kashino, S. (1999b). Acta Cryst. C55, 1714-1717.

Ishida, H. & Kashino, S. (2001). Acta Cryst. C57, 476-479.

Molecular Structure Corporation (1990). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381,

Molecular Structure Corporation (1997-1999). TEXSAN for Windows. Version 1.06. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.

Nihei, T., Ishimaru, S., Ishida, H., Ishihara, H. & Ikeda, R. (2000a). Chem. Phys. Lett. 329, 7-14.

Nihei, T., Ishimaru, S., Ishida, H., Ishihara, H. & Ikeda, R. (2000b). Chem. Lett. pp. 1346-1347.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.

refinement